Inorg. Chem. 2004, 43, 5-7

Synthesis and Characterization of a Magnetic Semiconductor Na₂RuO₄ Containing One-Dimensional Chains of Ru⁶⁺

Masahiro Shikano,^{†,‡} Reinhard K. Kremer,[§] Martin Ahrens,[§] H.-J. Koo,^{||} M.-H. Whangbo,^{||} and Jacques Darriet^{*,†}

Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB-CNRS), 87 Avenue du Docteur Schweitzer, 33608 Pessac Cedex, France, Special Division for Green Life Technology, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, 563-8577 Osaka, Japan, Max-Planck-Institut für Festkörperforschung (MPI-FPF), Heisenbergstrasse 1, D-70569 Stuttgart, Germany, and Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204

Received October 15, 2003

A new ternary ruthenium oxide Na₂RuO₄ was prepared and shown to crystallize with a new structure type. Single crystal X-ray diffraction measurements reveal that Na₂RuO₄ consists of RuO₄ chains made up of RuO₅ trigonal bipyramids by sharing axial corners. Na₂RuO₄ is a magnetic semiconductor with a variable range hopping behavior, and its molar magnetic susceptibility χ_{mol} has a broad maximum at \sim 74 K. The derivative d(χ_{mol} ·T)/dT exhibits a peak at 37.7 K which has been confirmed by heat capacity measurement to be due to long-range antiferromagnetic ordering.

Ternary Na–Ru–O phases that have been structurally characterized so far include Na₃RuO₄,^{1,2} Na_{3-x}Ru₄O₉,³ and NaRu₂O₄.⁴ In all these compounds, the ruthenium oxidation state does not exceed +5. A reinvestigation of the Na–Ru–O system by solid state synthesis under oxygen led to the new oxide Na₂RuO₄ containing Ru⁶⁺ (d²) ions, which is stable under oxygen up to 930 K. Several structure types of ternary transition metal oxides have the general formula A₂BO₄, e.g., the K₂NiF₄, olivine, and spinel type structures.⁵ Our single crystal structure determination reveals that Na₂RuO₄ chains made up of RuO₅ trigonal bipyramids by sharing their apical oxygen atoms. Measurements of the electrical and magnetic properties show that Na₂RuO₄ is an antiferromagnetic semiconductor with *T*_N close to 37 K.

ground in an agate mortar under argon. The mixture was heated at 720 K for 5 h, 800 K for 10 h, and 900 K for 20 h under oxygen atmosphere with gradual increasing temperature (less than 50 K/h) to avoid evaporation of sodium oxide. The reaction is highly exothermic. After grinding and further heating the mixture at 900 K for 50 h, we obtain a polycrystalline powder of Na₂RuO₄, which is air sensitive. Single crystals of Na₂RuO₄ were prepared by fast heating the starting stoichiometric mixture at 923 K followed by slowly decreasing the temperature in the range of 5 K/h. Single crystals are needle-shaped elongated along the *b* axis. The structure was solved and refined with the Jana 2000 program.⁶ Magnetic susceptibility was measured on a powder sample with a SQUID magnetometer in the temperature range from 2 to 320 K, in a field of 1 T. The electrical resistivity was measured on a crystalline block between 12 and 300 K with a four-probe method. The heat capacity was measured with the quasiadiabatic step-heating method (Nernst's method) on a powder sample of 0.44 g, which was encapsulated in a glass ampule under ~ 1 bar He gas to ensure thermal coupling.⁷ The heat capacity of the glass ampule was determined in a separate run and subtracted. The crystal structure of Na₂RuO₄ contains RuO₄ chains that are made up of slightly distorted RuO₅ trigonal bipyramids by sharing their axial oxygen atoms O_{ax} (Figure 1a). A unit cell has two nonequivalent RuO₄ chains, one based on Ru1O₅ and the other based on Ru2O₅ trigonal bipyramids (Figure 1b). In both types of trigonal bipyramids, the Ru–O bonds are long along the axial direction and short along the equatorial direction (i.e., $Ru-O_{ax} \approx 2.00$ Å and $Ru-O_{eq} \approx 1.76$ Å).⁸ Such a trigonal bipyramidal coordination of Ru⁶⁺ (d²) was found, e.g., for Ba[RuO₃(OH)₂], which contains isolated

 Na_2RuO_4 was prepared by solid state reactions from stoichiometric amounts of Na_2O_2 and RuO_2 . Powders were

^{*} To whom correspondence should be addressed. E-mail: darriet@icmcb.u-bordeaux.fr.

[†] ICMCB-CNRS.

[‡] AIST.

[§] MPI-FPF. || NCSU.

⁽¹⁾ Darriet, J.; Vidal, A. C. R. Acad. Sci. Chim. 1973, 277, 1235.

⁽²⁾ Darriet, J.; Galy, J. Bull. Soc. Fr. Minéral. Crystallogr. 1974, 97, 3.

⁽³⁾ Darriet, J. Acta Crystallogr. 1974, 30, 1459.

⁽⁴⁾ Darriet, J.; Vidal, A. Bull. Soc. Fr. Minéral. Crystallogr. 1975, 98, 374.

^{10.1021/}ic035191w CCC: \$27.50 © 2004 American Chemical Society Published on Web 12/10/2003

⁽⁵⁾ West, A. R. Solid State Chemistry and its Applications; Wiley: Chichester, New York, 1984.

Figure 1. (a) Projection view of Na_2RuO_4 along the RuO_4 chain direction. (b) Perspective view of the corner sharing RuO₅ bipyramids along the y-axis.

RuO₃(OH)₂²⁻ ions with OH⁻ ions occupying the axial positions.⁹ The -Ru-O_{ax}-Ru-O_{ax}- linkage of each RuO₄ chain is bent with a Ru– O_{ax} –Ru angle $\approx 125^{\circ}$ ($O_{ax} = O2$ or O8) (Figure 1b). The sodium atoms surround the chains forming hexagonal nets (Figure 1a) with the Na-O distances ranging between 2.327(7) and 2.912(12) Å. Bond valence

(9) Nowogrocki, G.; Abraham, F.; Tréhoux, J.; Thomas, D. Acta Crystallogr. 1976, B32, 2413.

Figure 2. Resistance of Na₂RuO₄ as a function of reciprocal temperature.

sum calculations¹⁰ yield an average oxidation state of +5.89for Ru^{11} and +1.10 for Na, in good agreement with the values expected for the formula Na₂RuO₄.

The volume per oxygen atom for Na₂RuO₄ is equal to 14.9 Å^{3,12} which is very close to the value found for a closed packed stacking ($\sim 15-16$ Å³).¹³ The unit cell parameters of Na₂RuO₄ can be approximated to a pseudohexagonal cell with $a_{\text{hex}} \approx 10.8$ Å and $c_{\text{hex}} = 7.04$ Å. If we assume an ideal structure in which the oxygen atoms of the equatorial plane of the bipyramids have the same height (y for the monoclinic cell or z for the pseudo hexagonal cell), as do the corresponding Ru atoms (1/4 or 3/4), the structure can be viewed as a close stacking of closely packed layers of composition Na_8O_4 and O_{12} along the z direction of the pseudohexagonal cell. The Na₈O₄ layer results from the O₁₂ layer by simply replacing 8 sodium atoms with 8 oxygen atoms. The sequence along the packing direction is *abaca*, where *a* represents the Na₈O₄ layer, and b and c the O₁₂ layers. In the resulting lattice, the Ru atoms occupy all the trigonal bipyramidal sites made up of oxygen atoms, which are located in the O₁₂ layers, hence leading to the composition Na_2RuO_4 (Z = 8). This structure corresponds to the simplest alternating sequence of Na₈O₄ and O₁₂ layers with the small cations Ru⁶⁺ located at the trigonal bipyramidal sites in the O₁₂ layers. One might imagine different phases based on the two types of layers with different sequences. Such phases should only be stabilized for transition metal cations with small ionic radius.

The temperature dependence of the electrical resistance R of Na_2RuO_4 (Figure 2) shows that Na_2RuO_4 is a semiconductor in all the temperature range studied. The temperature dependence of the resistance is well fitted by the expression expected for a variable range hopping model:¹⁴ $R \propto \exp[(T_0/T)^{1/(n+1)}]$ with $T_0 \approx 9.5 \times 10^5$ K and $n \approx 2.8$. This model assumes the occurrence of several hopping

⁽⁶⁾ Crystal data: Na₂RuO₄, $M_r = 211.05$ g/mol, monoclinic, space group $P2_1/n$, cell parameters (T = 293 K) a = 10.7098(1) Å, b = 7.0356(1) Å, c = 10.9253(2) Å, $\beta = 119.67(1)^\circ$, V = 715.30(5) Å³, Z = 8, $\rho = 10.9253(2)$ Å, $\beta = 119.67(1)^\circ$, V = 715.30(5) Å³, Z = 8, $\rho = 10.9253(2)$ Å, $\beta = 119.67(1)^\circ$, V = 715.30(5) Å³, Z = 8, $\rho = 10.9253(2)$ Å, $\beta = 10.9253(2)$ 3.919 g cm⁻³, μ (Mo K α) = 4.51 mm⁻¹, crystal size (cylindrical) 0.003 $\times 0.003 \times 0.145 \text{ mm}^3$, wavelength = 0.71069 Å, $\theta_{\text{max}} = 35^{\circ}$, sin- $(\theta/\lambda)_{\text{max}} = 0.807$, no. of reflections (obs/measd) 7711/22048 ($I > 3\sigma$ -(I)), no. of independent reflections 1200, no. of parameters refined 129, no constraint, weighting scheme $1/\sigma^2$, refinement on $|F^2|$, residual $\Delta \rho_{\text{max}} = 2.22 \text{ e/Å}^3$, $\Delta \rho_{\text{min}} = -1.73 \text{ e/Å}^3$, GOF = 1.56, reliability $R/R_{\rm w} = 4.37\%/8.53\%$. The structure data were collected on a Nonius Kappa CCD diffractometer. The structure was solved and refined with the Jana 2000 program: Petřiček, V.; Dušek, M. Jana 2000 program. Inst. Phys. Acad. Sci. Czech Republik, Prague, 1998. The refined atomic positions are the following: R11, x = 0.2522(1), y = 0.26886-(8), z = 0.2516(1), $U_{iso} = 0.0069(4)$ Å²; Ru2, x = 0.2490(1), y = 0.24411(6), z = 0.7488(1), $U_{iso} = 0.0080(5)$ Å²; Na1, x = 0.0552(6), y = 0.0060(5), z = 0.09021(7), $U_{iso} = 0.019(2)$ Å²; Na2, x = 0.3950-00002(5), z = 0.09021(7), $U_{iso} = 0.019(2)$ Å²; Na2, x = 0.3950-00002(5)(5), y = 0.0406(5), z = 0.0894(6), $U_{iso} = 0.017(2)$ Å²; Na3, x = $0.0634(5), y = 0.0636(5), z = 0.4144(5), U_{iso} = 0.021(2) Å^2; Na4, x$ = 0.3961(5), y = 0.0137(5), z = 0.5878(6), $U_{iso} = 0.015(2)$ Å²; O1, $x = 0.0847(8), y = 0.2721(7), z = 0.2502(9), U_{iso} = 0.012(4) \text{ Å}^2;$ O2, x = 0.1968(9), y = 0.0202(6), z = 0.1498(9), $U_{iso} = 0.011(4)$ Å²; O3, x = 0.2251(7), y = -0.1449(8), z = 0.3879(7), $U_{iso} = 0.017$ -(4) Å²; O4, x = 0.4084(7), y = 0.1504(8), z = 0.8887(7), $U_{iso} = 0.015-(3)$ Å²; O5, x = 0.4052(6), y = 0.1779(7), z = 0.3982(7), $U_{iso} = 0.015-(3)$ 0.011(3) Å²; O6, x = 0.2576(7), y = 0.3195(8), z = 0.5985(7), U_{iso} $= 0.013(3) \text{ Å}^2$; O7, x = 0.0882(9), y = 0.2528(7), z = 0.7588(11), $U_{\rm iso} = 0.018(4) \text{ Å}^2$; O8, x = 0.1878(9), y = -0.0062(6), z = 0.6532-(10), $U_{iso} = 0.016(4)$ Å². (7) Schnelle, W.; Gmelin, E. *Thermochim. Acta* **2002**, *391*, 41.

⁽⁸⁾ Selected bond distances: Ru1-O1 = 1.786(10) Å, Ru1-O2 = 2.000-(6) and 2.000(6) Å, Ru1-O3 = 1.766(9) Å, Ru1-O5 = 1.749(5) Å, and $Ru1-O2-Ru1 = 123.2(4)^{\circ}$; Ru2-O4 = 1.761(5) Å, Ru2-O6= 1.771(8) Å, Ru2-O7 = 1.781(11) Å, Ru2-O8 = 1.987(6) and 1.994(6) Å, and Ru2-O8-Ru2 = $124.2(4)^{\circ}$

⁽¹⁰⁾ Brese, N. E.; O'Keeffe, M. Acta Crystallogr. 1991, B47, 192.

⁽¹¹⁾ The bond valence parameter for Ru6+ is unknown. This parameter has been deduced by considering the environment of the oxygen atoms in the structure and assuming that their charge is -2. An average parameter of 1.905 for Ru6+ has been calculated and used in the calculation of the BVS of this atom.

⁽¹²⁾ The sodium is included in the calculation of the volume per anion site as it is usually done. Therefore, v/site = V/6Z with Z = 8 and V= volume of the unit cell.

⁽¹³⁾ Hyde, B. G.; Anderson, S. Inorganic Crystal Structures; J. Wiley and Sons: New York, 1989; p 52 and 258.

⁽¹⁴⁾ Wallis, R. H.; Sol, N.; Zylbersztejn, A. Solid State Commun. 1977, 23, 539-542.

Figure 3. Molar magnetic susceptibility of Na₂RuO₄. The inset displays the quantity $d(\chi_{mol} \cdot T)/dT$ in the vicinity of the Néel temperature.

Figure 4. Heat capacity of Na₂RuO₄. The inset displays the long-range ordering anomaly at the Néel temperature. It contains about 5% of the entropy expected for an S = 1 system.

processes with slightly different activation energies. This is understandable because the Ru1O₅ and Ru2O₅ trigonal bipyramids are slightly different in structure and because each RuO₅ trigonal bipyramid does not possess a 3-fold rotational symmetry along the Ru–O_{ax} axis.⁸ If each RuO₅ trigonal bipyramid has an ideal shape of C_{3h} point group symmetry, its d-block levels will be split into the 1e'' (*xz*, *yz*) < 1e' (*x*² - *y*², *xy*) < 1a' (*z*²) pattern, so that the ground state electronic configuration of each Ru⁶⁺ (d²) site will be given by $(d_{xz})^{1}(d_{yz})^{1}$ (with the *z*-axis taken along the Ru–O_{ax} bond). For the distorted RuO₅ trigonal bipyramids of Na₂RuO₄, the degeneracy of the 1e'' and 1e' levels is lifted so that an electron hopping from one Ru⁶⁺ site to another will encounter several different activation energies.

The temperature dependence of the magnetic susceptibility χ_{mol} of Na₂RuO₄ is shown in Figure 3. The χ_{mol} versus *T* curve exhibits a broad maximum at $T_{max} \approx 74$ K, which is characteristic of short-range antiferromagnetic (AFM) ordering in low dimensional magnets. Above 200 K, the reciprocal susceptibility can be fitted by a Curie–Weiss law with a

COMMUNICATION

Weiss constant $\theta = -273(5)$ K and Curie constant C = 1.14(2) cm³ K/mol, which is close to 1 cm³ K/mol expected for the spin only contribution from Ru⁶⁺ (d²) (i.e., g = 2 and S = 1). However, attempts to fit the susceptibility to the theoretical result for an isolated S = 1 AFM Heisenberg chain with nearest-neighbor interaction along the chain failed.¹⁵

We ascribe this failure to the presence of considerable interchain interactions, which in fact lead to long-range magnetic ordering. As shown in Figure 4, the heat capacity exhibits a λ -type anomaly at 37 K characteristic of threedimensional ordering. This ordering temperature is also confirmed by a prominent discontinuity at ≈ 37.7 K in the quantity $d(\chi_{mol} \cdot T)/dT$ ("Fishers heat capacity", see the inset in Figure 3). We conclude that Na₂RuO₄ magnetically is not a well isolated one-dimensional chain system. Interchain interactions will also explain the sizable Weiss parameter. For an S = 1 Heisenberg chain, a short range ordering maximum in the susceptibility at 74 K corresponds to an exchange constant of about -28 K and a Weiss constant of about -75 K.¹⁶

Sizable interchain coupling will also prevent a Haldane gap scenario^{15,17,18} (i.e., an energy gap between the ground state and the first excited magnetic states for an integer *S*) to open. Na₂RuO₄ is an example for which the analysis of structural features at room temperature alone is insufficient in predicting the dimensionality of the magnetic model.

Acknowledgment. This work was carried out during the stay of M.S. in ICMCB for one year, which was made possible by the financial support from a grant: bourse Egide 341477J of ministère français des affaires étrangères. The work at NCSU was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, U.S. Department of Energy, under Grant DE-FG02-86ER45259.

Supporting Information Available: X-ray crystallographic information for Na₂RuO₄ in CIF format and a representation of ideal stacking of the layers in the structure of Na₂RuO₄. This material is available free of charge via the Internet at http:// pubs.acs.org.

IC035191W

- (15) Haldane, F. D. M. Phys. Rev. Lett. 1983, 50, 1153.
- (16) Carlin, R. L. *Magnetochemistry*; Springler Verlag: New York, 1986.
 (17) Buyers, W. J. L.; Morra, R. M.; Armstrong, R. L.; Hogan, M. J.; Gerlach, P.; Hirakawa, K. *Phys. Rev. Lett.* **1986**, *56*, 371.

⁽¹⁸⁾ Sakaguchi, T.; Kakurai, K.; Yokoo, T.; Akimitsu, J. J. Phys. Soc. Jpn. **1996**, 65, 3025.